71 research outputs found

    Domino Gate with Modified Voltage Keeper

    Get PDF
    Abstract Using both the modified supply voltage and body voltage, an optimized keeper technique is presented in this paper to tradeoff the performance of domino OR gates. The simulation results show that the novel technique can highly improve power/speed efficiency and robustness to noise. In addition, because of employment of body biased voltage, the optimized keeper technique enables to minimize effect of the strong process parameter variation

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Linear Offset-Free Model Predictive Control in the Dynamic PLS Framework

    No full text
    This work addresses the model predictive control (MPC) of the offset-free tracking problem in the dynamic partial least square (DyPLS) framework. Firstly, state space MPC based on the DyPLS is proposed. Then, two methods are proposed to solve the offset-free problem. One is to reform the state space model as a velocity form. Another is to augment the state space model with a disturbance model and estimate the mismatch between system output and model output with an estimator. Both methods use the system output as a feedback in the control scheme. Hence, the offset-free tracking is guaranteed, and unmeasured step disturbance can be rejected. The results of two simulations demonstrate the effectiveness of proposed methods

    The Partitioning of Catchment Evapotranspiration Fluxes as Revealed by Stable Isotope Signals in the Alpine Inland River Basin

    No full text
    Evapotranspiration is an important process in the water budget of an ecosystem. Quantifying the components of evapotranspiration is of great significance in revealing the ecohydrological process of alpine inland river basins. In this study, the evapotranspiration fluxes in the Shaliu River basin were classified by hydrogen and oxygen stable isotope technology and remote sensing technology. The results showed the following: (1) The average value of soil fractional evaporation (E1) in the summer of 2018 and 2019 was 7.59 mm and 2.10 mm, respectively. (2) The average ratio of soil evaporation (Esoil) in the summer of 2018 was 48.82%, 68.11%, 54.99%, respectively. The average ratio of Esoil in the summer of 2019 was 66.86%, 57.50%, 55.53%, respectively. The average value of Esoil in the summer of 2018 and 2019 was 42.84 mm and 35.36 mm, respectively. (3) The average ratio of vegetation transpiration (T) in the summer of 2018 was 51.18%, 31.89%, and 45.01%, respectively. The average ratio of T in the summer of 2019 was 33.14%, 42.50%, and 44.47%, respectively. The average value of T in the summer of 2018 and 2019 was 32.59 mm and 26.23 mm, respectively. Obviously, the soil fractionation was stronger in the summer of 2018 than that in the summer of 2019. At the same time, both soil evaporation and plant transpiration in summer 2018 were higher than those in summer 2019, and soil evaporation in the Shaliu River basin was greater than plant transpiration in summer during the study period. The results of this study can provide data reference for mastering the eco-hydrological process of the Shaliu River basin
    corecore